Applications of ion beams and radiation

Besides fundamental knowledge gained by the studies of nuclear structure and reactions, Nuclear Physics has been proven useful in everyday’s questions and practicalities. There are several synergies between Nuclear Physics and other scientific fields, such as Medicine or Environmental Science.

Several types of radiation are produced in nuclear systems, such as γ and X, which are fundamental in extracting information from materials and about processes in several scientific fields, such as Environmental Science, Geology and Geochemistry, Material Science, Electronics, Biology etc. In addition, an immediate consequence of Nuclear Physics is Health and Medical Physics with a large impact to general population on both diagnosis and disease treatment.

On the other hand, synchrotron radiation is one of the modern tools that utilize radiation to study environmental samples, radiological and chemical contamination, as well as impact on the general population. Recent experimental studies at ANKA center in Germany have focused on radiochemical impact of isotopic thorium in environmental samples and the dispersion of toxic heavy metals in greek soil, mainly due to Saharan dust deposition. These studies are now expanded to explore the full cycle of radiative samples in the greek environment and its impact to citizens.

Very recently, the NUSTRAP group have invested a great mount of effort to expand investigations in the environments by both in situ and offline analysis of NORM and TENORM radiation. A new NaI-based mobile spectrometer has been optimized, characterized and deployed in the research field. Additionally, a 25% HPGe detector has been recently donated to the group and is currently being prepared (calibration, simulation) to expand the limits of our scientific program by developing a gamma-spectroscopy station.

Associate Professor | Department of Physics | University of Athens

WP Twitter Auto Publish Powered By :