Improved evaluation of nuclear charge radii for superheavy nuclei

Although significant progress has been made in the synthesis of superheavy nuclei, the experimental knowledge of them is still very limited while the alpha decay chain is the main tool used to identify newly produced superheavy nuclei. Previously, we have extracted nuclear charge radii of superheavy nuclei via the experimental alpha decay data. As a further step, the density dependent cluster model is improved by introducing the difference between the density distributions of protons and neutrons. Besides, the important quantity, i.e., the alpha preformation factor, is connected with the microscopic correction of nuclear mass during this procedure, to perform a more reasonable description of the alpha decay process. It is found that the present deduced nuclear charge radii of heavy nuclei are in a better agreement with the measured values as compared to those in our previous evaluations. Subsequently, the nuclear radii of heavier even–even isotopes with Z = 98–116 are probed, accompanied by the consistency with the empirical evaluations. Moreover, the effect of the depressed density at the center of superheavy nucleus on the final extracted nuclear radius plus the decay lifetime is discussed, which appears to be different from the case of lighter nuclide.

 

Read full article here

Isoscalar and isovector spin response in sd-shell nuclei

The spin magnetic-dipole transitions and the neutron-proton spin-spin correlations in sd-shell even-even nuclei with N=Z are investigated by using shell-model wave functions taking into account enhanced isoscalar (IS) spin-triplet pairing as well as the effective spin operators. It was shown that the IS pairing and the effective spin operators gives a large quenching effect on the isovector (IV) spin transitions to be consistent with data observed by (p,p’) experiments. On the other hand, the observed IS spin strengths show much smaller quenching effect than expected by the calculated results. The IS pairing gives a substantial quenching effect on the spin magnetic-dipole transitions, especially on the IV transitions. Consequently, an enhanced IS spin-triplet pairing interaction enlarges the proton-neutron spin-spin correlation deduced from the difference between the IS and the IV sum-rule strengths. The β-decay rates and the IS magnetic moments of the sd shell are also studied in terms of the IS pairing as well as the effective spin operators.

Figure 7

Read full article here